Modification of the Randall-Selitto analgesic apparatus

In screening programs designed to detect analgesics, the initial testing procedure usually includes in rodents, some measurement of protection shown by a test compound against a noxious stimulus, such as chemicals (Siegmund, Cadmus & Lu, 1957), heat (Wolfe & MacDonald, 1944; Eddy & Leimbach, 1953), electricity (D'Amour & Smith, 1941) and air pressure (Randall & Selitto, 1957).

Because the air pressure method of Randall & Selitto (1957) detects antipyretic and anti-inflammatory analgesics and the more potent analgesics, its use is often preferred.

Our experience with the apparatus as modified by Winter & Flataker (1965) has been satisfactory except that, after repeated or prolonged use, the Teflon plunger sometimes becomes immobile. We now describe a simpler apparatus which has given reproducible results in our hands.

Two pieces of aluminum plate (a) are separated by a plexiglass tube (b) and "sandwiched" between the plates is a latex rubber diaphragm (c) which responds to externally applied low air pressure (A). To the diaphragm, a stainless steel rod (e) is attached, which in turn transmits pressure to the rat paw. The paw is placed over a positioning block similar to that described by Winter & Flataker (1965). The air pressure is regulated by a needle valve so that a rise of 10 mm/s is maintained and cut-off at 100 mm Hg. A sharp "squeak" or an escape response or both are used as an end point.

FIG. 1. A. Air supply. a. Aluminium plates— $\frac{1}{2}$ inch \times 5 inch diameter. b. Plexiglass tube— $\frac{1}{4}$ inch \times 1 inch \times 5 in diameter. c. Latex rubber diaphragm (slightly inflated), 1/16 inch \times 5 inch in diameter. d. Stainless steel plates—1/16 inch \times 1 inch diameter. e. Stainless steel rod $\frac{1}{4}$ inch tapered to 2 mm at end. f. Guided sleeve. h. Air vents. i. Bolts.

Female weanling Sprague-Dawley rats 40-60 g weight were fasted overnight with water *ad lib*. After pre-testing the animals for threshold responses the procedure of Winter & Flataker (1965) was followed.

The oedema and hyperesthesia, ensuing after injection of 0.1 ml of 5% yeast into the right hind paw, were allowed to develop for 2 h before drugs were administered orally. The doses were given in a volume of 1 ml/kg. The suspending agent was 0.5% carboxymethylcellulose. The thresholds to pressure were measured 1 h later.

The minimum effective dose is calculated by the dose-response curve and represents the minimum dose that produces effects statistically significantly different (P = 0.05) from control values based on Dunnett's "t" (Dunnett, 1955).

Typical antipyretic-anti-inflammatory analgesic compounds increase only the threshold of the inflamed foot, whereas the more potent analgesics will affect both inflamed and normal foot thresholds (see also Randall & Selitto, 1957). The effect of (+)-proposyphene at 20 mg/kg on the normal foot is just beyond significant difference and it would seem probable that a dose of 25-30 mg/kg would show significance (Table 1).

Drugs		(Dral dose** (mg/kg)	No. of rats	Thresholds* (mm pressure) I.F. N.F.		Minimum effective dose mg/kg I.F. N.F.	
Control Aspirin	•••	 	CMC 75 150	25 10 25	$\begin{array}{c} 15 \pm 2{\cdot}6 \\ 20 \pm 4{\cdot}3 \\ 21 \pm 4{\cdot}3 \end{array}$	$\begin{array}{c} 48 \pm 1.3 \\ 47 \pm 0.8 \\ 48 \pm 1.3 \end{array}$	100	
Control Phenylbutazon	 e	 	300 CMC 10 20	25 35 15 35	$28 \pm 3.9 \\ 16 \pm 2.2 \\ 21 \pm 2.1 \\ 29 \pm 7.3 \\ 32 \pm 6.4$	$48 \pm 1.3 \\ 49 \pm 1.7 \\ 49 \pm 3.2 \\ 49 \pm 0.9 \\ 48 \pm 1.3 \\ 113$	10	_
Control Indomethacin	•••	 	CMC 0·4 2 10	20 20 20 20 20	32 ± 0.4 14 ± 1.4 16 ± 2.1 23 ± 2.6 33 ± 2.8	$ \begin{array}{r} 48 \pm 1.3 \\ 48 \pm 1.3 \\ 49 \pm 1.5 \\ 50 \pm 0.6 \end{array} $	1.4	-
Control Morphine	•••	•••	10 20 40	20 15 15	16 ± 2.4 27 ± 2.4 36 ± 7.7 47 ± 6.5	50 ± 0.4 51 ± 4.1 55 ± 2.4 61 ± 4.1	<10	16
Control (+)-Propoxypl	nene	•••	5 10 20	25 15 22 25	15 ± 3.3 17 ± 1.6 18 ± 1.5 25 ± 4.5	50 ± 1.6 50 ± 0.7 50 ± 0.9 54 ± 2.8	14	>20

Table 1. Effect of various drugs upon air pressure thresholds in rats

CMC = carboxymethylcellulose. I.F.—inflamed foot- N.F.—normal foot. * Figures represent mean \pm standard deviation.

** Rats dosed 2 h after 0:1 ml of 5% yeast injected into subplantar tissue of hind paw. Thresholds measured 1 h after oral dosing.

The doses of compounds which show a significant difference from controls are considerably greater, especially for morphine, than those reported in the literature (Winter & Flataker, 1965, Randall & Selitto, 1957) but the animals were dosed orally rather than parenterally.

Research Department, Sandoz Pharmaceuticals, Hanover. New Jersey, 07936, U.S.A. July 11, 1969

E. I. TAKESUE W. SCHAEFER E. JUKNIEWICZ

REFERENCES

D'AMOUR, F. E. & SMITH, D. L. (1941). J. Pharmac. exp. Ther., 72, 74-79. DUNNETT, C. W. (1955). J. Am. Statist. Ass., 50, 1096-1121. EDDY, N. B. & LEIMBACH, D. (1953). J. Pharmac. exp. Ther., 107, 385-393. RANDALL, L. O. & SELITTO, J. J. (1957). Archs int. Pharmacodyn. Thér., 111, 409-419. SIEGMUND, E., CADMUS, R. & LU, G. (1944). Proc. Soc. exp. Biol. Med., 95, 729-731. WINTER, C. A., & FLATAKER, L. (1965). J. Pharmac. exp. Ther., 148, 373-379. WOLFE, G. & MACDONALD, A. D. (1944). Ibid., 80, 300-307.